

Centre Scientifique et

Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

European Technical Assessment

ETA-12/0370 of 21/06/2016

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial Trade name

Famille de produit *Product family*

Titulaire *Manufacturer*

Usine de fabrication Manufacturing plants

Cette evaluation contient: This Assessment contains

Base de l'ETE Basis of ETA

Cette evaluation remplace: This Assessment replaces

MFT EKSPANJONSBOLT A4

Cheville métallique en acier inoxydable, à expansion par vissage à couple contrôlé, de fixation dans le béton non fissuré :

diamètres M8, M10, M12 et M16

Torque-controlled expansion anchor, made of stainless steel, for use in uncracked concrete: sizes M8, M10, M12 and M16

Hitachi Power Tools Norway AS Kjeller Vest 7 2007 Kjeller Norway

Plant 1

12 pages incluant 9 annexes qui font partie intégrante de cette évaluation 12 pages including 9 annexes which form an integral part of this assessment

ETAG 001, Version Avril 2013, utilisée en tant que DEE ETAG 001, Edition April 2013 used as EAD

ATE-12/0370 valide du 18/10/2011 au 18/10/2016 ETA-12/0370 with validity from 18/10/2011 to 18/10/2016

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

3.7 Sustainable use of natural resources ((BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	oduct Intended use		System	
Metal anchors for use in concrete.	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units.	_	1	

5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

The original French version is signed by

Charles Baloche Technical Director

Assembled anchor: bolt and expansion sleeve

Marking on the bolt:

FM X/Y A4 with X = thread diameter (d) Y = fixture thickness (t_{fix}) e.g. FM 10/5 A4 (size M10x75)

A letter code corresponding to the total length of the bolt is punched on the head of the bolt.

Table 1: Materials

Part	Designation	Material
1	Bolt	Stainless steel AISI 316-L-Cu X3CrNiCuMo 17-11-3-2 (UNI EN 10088/3) Stainless steel AISI 316-L X2CrNiMo 17-12-2 (UNI EN 10088/3)
2	Expansion sleeve	Stainless steel AISI 316-L X2CrNiMo 17-12-2 (UNI EN 10088/2)
3	Washer	A4 – 140 Hv (DIN 125)
4	Hexagonal nut	A4-70 (DIN 934)

MFT EKSPANSJONBOLT A4

Product description

Parts, materials and marking

Table 2: Anchor dimensions

	Anchor size	Marking	L [mm]	t _{fix} [mm]	d _r [mm]	d _{nom} [mm]	l _{bague} [mm]	Letter code
SM	M8x65	FM 8/7 A4	65	7				В
	M8x75	FM 8/15 A4	75	15				С
	M8x90	FM 8/30 A4	90	30				D
N	M8x115	FM 8/55 A4	115	55	5,8	8,0	11,5	Е
	M8x135	FM 8/75 A4	135	75				F
1	M8x165	FM 8/105 A4	165	105				G
	M10x75	FM 10/5 A4	78	5				В
0	M10x90	FM 10/20 A4	90	20				С
M10	M10x120	FM 10/50 A4	120	50	7,4 -	10,0	14,0	D
	M10x145	FM 10/75 A4	145	75				Е
LINE (M10x170	FM 10/100 A4	173	100				F
1551	M12x100	FM 12/10 A4	100	10		12,0		В
N [M12x110	FM 12/20 A4	110	20				С
M12	M12x135	FM 12/45 A4	135	45	8,8		17 [D
-	M12x160	FM 12/70 A4	160	70				E
	M12x185	FM 12/100 A4	188	100				F
	M16x125	FM 16/10 A4	125	10				Α
M16	M16x145	FM 16/30 A4	145	30	40.0	40.0		В
Z	M16x175	FM 16/60 A4	175	60	12,6	16,0	23	С
	M16x215	FM 16/100 A4	215	100				D

Table 3: Installation data

	Anchor type	d _{cut} [mm]	d _f [mm]	T _{inst} [Nm]	h _{min} [mm]	h 1 [mm]	h _{nom} [mm]	h _{ef} [mm]	S _{min} [mm]	C _{min} [mm]
M8	FM 8/7 A4 FM 8/15 A4 FM 8/30 A4 FM 8/55 A4 FM 8/75 A4 FM 8/105 A4	8	9	15	100	60	48	40	60	60
M10	FM 10/5 A4 FM 10/20 A4 FM 10/50 A4 FM 10/75 A4 FM 10/100 A4	10	12	25	100	70	59	50	75	75
M12	FM 12/10 A4 FM 12/20 A4 FM 12/45 A4 FM 12/70 A4 FM 12/100 A4	12	14	50	120	85	71	60	90	90
M16	FM 16/10 A4 FM 16/30 A4 FM 16/60 A4 FM 16/100 A4	16	18	100	170	115	96	85	130	130

MFT EKSPANSJONBOLT A4

Intended Use

Installation parameters

Annex B2

Table 5: Characteristic values for shear loads in case of static and quasi static loading for design method A acc. ETAG001, Annex C

			M8	M10	M12	M10	
Steel failure without lever arm							
Characteristic resistance	V _{Rk,s}	[kN]	11,9	18,9	27,4	51,0	
Partial safety factor	γ _{Ms} ¹⁾	[-]		1,	33		
Steel failure with lever arm							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	24	49	85	216	
Partial safety factor	γ _{Ms} ¹⁾	H		1,	33		
Concrete pry-out failure							
Factor in equation (5.6) of ETAG001, Annex C, § 5.2.3.3	k	[-]	1,0	1,0	2,0	2,0	
Partial safety factor	γ _{Mc} ¹⁾	[-]		1,	5 ²⁾		
Concrete edge failure							
Effective length of anchor under shear loading	ŀ	[mm]	40	36	43	62	
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	
					1,5 ²⁾		
Partial safety factor ¹⁾ In absence of other national regulation ²⁾ The value contains an installation safe		[-] 1.0		1,	5 ²⁾		
	s			1,	5 ²⁾		

Table 7: Characteristic values for shear loads in case of static and quasi static loading for design method A acc. CEN/TS 1992-4

			M8	M10	M12	M16		
Steel failure without lever arm						- 11 A		
Characteristic resistance	V _{Rk,s}	[kN]	11,9	18,9	27,4	51,0		
Factor considering ductility	k ₂	[-]		0	,8			
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,33					
Steel failure with lever arm			1.21.3					
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	24	49	85	216		
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,33					
Concrete pry-out failure								
Factor in equation (16) of CEN/TS 1992-4-4, § 6.2.2.3	k ₃	[-]	1,0	1,0	2,0	2,0		
Partial safety factor	γ _{Mc} ¹⁾	[-]	1,5 ²⁾					
Concrete edge failure		Same and						
Effective length of anchor under shear loading	ŀr	[mm]	40	36	43	62		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16		
Partial safety factor	γ _{Mc} ¹⁾	[-]		1,5	5 ²⁾			

¹⁾ In absence of other national regulations

 $^{2)}$ The value contains an installation safety factor γ_2 = 1.0

MFT EKSPANSJONBOLT A4

Design according to CEN/TS 1992-4

Characteristic resistance under shear loads

Annex C4